Category Archives: Rust

UTest Harness for Rust (Setup/Test/Release)

Edit Titel should have been “setup/test/teardown”

The crate test-generator-utest implements a 3-phase utest-harness for Rust. These 3 phases are:

Setup: the setup function must initialize the context; in case the setup-function panics/aborts, the utest is aborted
fn() -> Context

Test: if the setup did return with valud context item, the context-reference is borowed to invoke the test-function
fn( & Context )

Teardown: no matter if the test-function above did panic/abort, the teardown function is invoked to release the context
fn( Context )

No matter of any panic or failing assertion in the second phase (feature testing), the teardown function is invoked. The test will either succeed, or otherwise unwinding a failure in the setup-phase, the test-phase or the teardown-phase.

This crate has been inspired by the post of Eric Opines.

## Usage

Please see the executable example mytests

#[cfg(test)]
extern crate test_generator_utest;

// demonstrating usage of utest-harness
mod testsuite {
    use std::fs::File;
    use std::io::prelude::*;

    use test_generator_utest::utest;

    // Defining a context structure, storing the resources
    struct Context<'t> { file: File, name: &'t str }

    // Setup - Initializing the resources
    fn setup<'t>(filename: &str) -> Context {
        // unwrap may panic
        Context { file: File::create(filename).unwrap(), name: filename }
    }

    // Teardown - Releasing the resources
    fn teardown(context: Context) {
        let Context { file, name } = context;

        // drop file resources
        std::mem::drop(file);

        // unwrap may panic
        std::fs::remove_file(name).unwrap();
    }

    // Test - verify feature
    fn test_write_hello_world(ctx: &Context) {
        // may panic
        let mut file = ctx.file.try_clone().unwrap();

        // may panic
        file.write_all(b"Hello, world!\n").unwrap();

        // demonstrating assertion
        assert_eq!(1,1);

        std::mem::drop(file);
    }

    // Test - verify feature
    fn test_write_hello_europe(ctx: &Context) {
        // may panic
        let mut file = ctx.file.try_clone().unwrap();

        // may panic
        file.write_all(b"Hello, Europe!\n").unwrap();

        // demonstrating assertion
        assert_eq!(1,1);

        std::mem::drop(file);
    }

    // Defining Utest formed by setup, test and teardown
    utest!(hello_world,
        || setup("/tmp/hello_world.txt"),
        |ctx_ref| test_write_hello_world(ctx_ref),
        |ctx|teardown(ctx));


    // Defining Utest formed by setup, test and teardown
    utest!(hello_europe,
        || setup("/tmp/hello_europe.txt"),
        test_write_hello_europe,
        teardown);
}

Executing the example code cargo test -p test-generator-example testsuite the testsuote above will print the following output.

running 2 tests
test testsuite::hello_europe ... ok
test testsuite::hello_world ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 3 filtered out

Please let me know about possibel improvements via github-issues at test-generator-utest

Test-generator v0.3

A new version of test-generator (0.3) has been published. This crate introduces #[test_resources(PATTERN] and #[bench_resources(PATTERN)] procedural macro attributes that generates multiple parametrized tests using one body with different resource input parameters. A test is generated for each resource matching the specific resource location pattern.

The Computer Language Benachmarks Game: Rust ranks #1 for n-body

The Computer Language Benchmarks Game is a free software project for comparing how a given subset of simple algorithms can be implemented in various popular programming languages.

I converted the fastest (dating early 2019) n-body C-implementation (#4) to Rust (#7) in a one-to-one fashion, gaining a performance encreasement by factor 1.6 to my own surprise.

The moment writing, the benachmarks are measured on quad-core 2.4Ghz Intel® Q6600® ; dating back to the year 2006. This ancient hardware supports the SSSE3 64bit-SIMD instructions; both implementations are making use them intensively.

The conversion of the implementation from C to Rust was fun and educational; listing just a few:

  • The pattern of “static global memory” of C had to be transformed to similar code just based on he Rust ownership model.
  • Dealing with memory alignment-directives in Rust
  • Using the early, stable SIMD-API of Rust, namely std::arch::x86_64::*

I must admit that newer test-hardware with support for more advanced AVX-512 SIMD-instructions, would permit to run an even faster Rust-implementation of the n-body task as part of these benchmarks.

Rust crates – frehberg’s annotated catalogue

The base of Rust users and contributors is growing steadily. The amount of libraries (aka crates) at http://crates.io is growing quickly; the overall “noise” is increasing. Some libraries might not be maintained any longer 🙁

This annotated catalogue shall help the Rust-users to find specific, popular, mature Rust crates. This list is WIP (Work In Progress), reflecting my personal shortlist. The ordering in the table top-down doesn’t express any preference.

For more extensive listings, please check out content of https://crates.io (or the categorized search engine https://lib.rs) and corresponding API-docs at https://docs.rs

Other sources of information might be:

NameDescription
nomnom is a parser combinators library written in Rust. Its goal is to provide tools to build safe parsers without compromising the speed or memory consumption.
pestpest is a general purpose parser written in Rust with a focus on accessibility, correctness, and performance. It uses parsing expression grammars (or PEG) as input.
assert_matchesProvides a macro, assert_matches, which tests whether a value matches a given pattern, causing a panic if the match fails.
bytesA utility library for working with bytes.
serdeSerde is a framework for serializing and deserializing Rust data structures efficiently and generically.
serde_jsonSerde JSON serializing and deserializing implementation for Rust.
tokioTokio is an event-driven, non-blocking I/O platform for writing asynchronous applications with the Rust programming language.
romioAsynchronous network primitives in Rust. Romio combines the powerful futures abstractions with the nonblocking IO primitives of mio to provide efficient and ergonomic asynchronous IO primitives for the Rust asynchronous networking ecosystem. Whereas Tokio is using stable Rust-features only, Romio may use so called "unstable" Rust-features from nightly releases.
uomUnits of measurement is a crate that does automatic type-safe zero-cost dimensional analysis.
mockiatoA strict, yet friendly mocking library for Rust
proptestProptest is a property testing framework (i.e., the QuickCheck family) inspired by the Hypothesis framework for Python. It allows to test that certain properties of your code hold for arbitrary inputs, and if a failure is found, automatically finds the minimal test case to reproduce the problem.
test-case-deriveThis crate provides #[test_case] procedural macro attribute that generates multiple parametrized tests using one body with different input parameters.
env_loggerImplements a logger that can be configured via environment variables. env_logger makes sense when used in executables (binary projects). Libraries should use the log crate instead.
gtkRust bindings and wrappers for GLib, GDK 3, GTK+ 3 and Cairo; the popular, platform independent GUI library.
rust-qtDo not use! In contrast to the gtk crate, this GUI library is incomplete and it seems it is no longer maintained.
flutter-engineExperimental! Flutter is Google’s portable UI toolkit for building beautiful, natively-compiled applications for mobile, web, and desktop from a single codebase.
gfxgfx is a high-performance, bindless graphics API for the Rust programming language. It aims to be the default API for Rust graphics: for one-off applications, or higher level libraries or engines.
lazy_staticA macro for declaring lazily evaluated statics in Rust. Using this macro, it is possible to have statics that require code to be executed at runtime in order to be initialized.
regexA Rust library for parsing, compiling, and executing regular expressions. Its syntax is similar to Perl-style regular expressions, but lacks a few features like look around and backreferences. In exchange, all searches execute in linear time with respect to the size of the regular expression and search text. Much of the syntax and implementation is inspired by RE2.
memmapA cross-platform Rust API for memory mapped buffers. May be used to speed-up file-IO.
randA Rust library for random number generation. Rand provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
bastionBastion is a Fault-tolerant Runtime for Rust applications, a supervisor framework as known from Erlang.
test-generatorTest-Generator provides the macros test_resources and bench_resources, executing a test for all items matching a specific glob-pattern, such as "res/tests/*.idl"
test-generator-utestTest-Generator-Utest providing 3-phase testing macro "utest!(setup, test, teardown)"

Rust – Arrays? Make chains, not concat!

If your application needs to iterate over a bunch of items from different sources or arrays, someone with C/C++ background might copy all items into a single vector and iterate this vector.

This strategy will cause high costs in terms of allocating heap memory for the consecutive vector buffer.

Instead, keep the data where it is, and chain it together to form an iterator over a virtual array.

The following Rust code demonstrates the chaining of multiple arrays, forming a single iterator, without any additional allocation of vector buffer in heap.

Note, the zip operation in the following code snippet pairs each item with a slot in the buffer. The zip will stop if either end is reached, the end of chained_byte_sequence or the end of therequest buffer, whichever comes first. Just, the length of chained_byte_sequence might be unknown and only a single pass shall be performed. So, how do we know all items have been written, and the amount? The solution is to borrow the iterator via chained_byte_sequence.by_ref(), iterating the chain and finally verifying if any item remained in the sequence chained_byte_sequence.next()!=None.

  let req_method_get = b"GET ";
    let req_method_head = b"HEAD ";
    let uri = b"/infotext.html HTTP/1.1";

    let mut request = [0 as u8; 128];

    // chaining various byte-arrays together, for example two here:
    let mut chained_byte_sequence =  req_method_get.iter()
        .chain(uri.iter());

    // take a ref and zip against the destination buffer and 
    // while iterating via fold, each element is counted.
    let  nwritten =
        chained_byte_sequence
        .by_ref()
        .zip(request.as_mut())
            .fold(0, |cnt, (item, slot) | {
                *slot = item.clone(); cnt+1
            });

    // finally, verify the iterator of the chained_byte_sequence is empty
    if chained_byte_sequence.next()!=None {
        /* slice too short */ panic!();
    } else {
        println!("{:?}", &request[0..nwritten].as_ref());
    };